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e 2D plasmoid instability

Linear theory

Scaling laws & reconnection rate in nonlinear regime
Distribution of Plasmoids

Hall MHD and reconnection phase diagram

e Plasmoid instability in 3D

e Linear oblique plasmoid instability in 3D geometry with a guide
field

o Nonlinear simulation

e Reconnection rate — comparison with 2D

e Energy spectrum and characteristic of turbulence

e Supra-arcade downflows (SADs)
o Observation & Interpretations
o Ralyleigh-Taylor type instabilities in the reconnection exhaust
region
e Future directions & possible connection with laboratory plasma
physics



Classical Sweet-Parker Theory

e S=LVy/n
0 6~ L/VS, up~Vau; ~Va/VS

o Solar Corona: S ~ 10'2, 74 = L/V4 ~ 1s = 75p ~ 105 >> Solar
flare time scales 102 — 103s.



Plasmoid Instability Leads to Reconsideration of Fast

Reconnection in Resistive MHD

@ The Sweet-Parker current sheet is unstable to secondary tearing
instability at high S.

o Linear theory predicts v ~ S'/4V,4/L and the number of plasmoids
~ S3/8. (Loureiro et al. 2007)

@ The key point is that the equilibrium also scales with S:
dsp ~ LS —1/2



Linear Plasmoid Instability

Harris sheet profile B = B, tanh(x/a)§y

[ Sy - a5, ks 57!
YTa Sa ' (ka)??, ka < 501

Peak v ~ Sa_l/2 at ka ~ Sa_l/4, where S, = aVu/n, T4 = a/Va.

Coppi et al. 1976

A

Translate to the Sweet-Parker language: "™ ’
S=LVa/n,a— dgp ~ LS~ Y/2

The peak ~ occurs at kL ~ S3/8 with
Ymaz ™~ Sl/4VA/L-

Bhattacharjee et al. 2009



Plasmoid Instability Leads to Fractal-like Cascade
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Unstable when S > S, ~ 10*. The reconnection
rate ~ 1072BV, nearly independent of S. No.
of plasmoids n, ~ S, secondary current sheet
width and length ~ S~% and J ~ S.
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Heuristic Argument Based on Marginal Stability

- L >
— @ — @ >
VA Lc <VA

Secondary current sheets should be close to marginally stable
o Cascade to smaller scales stops when local current sheets become
stable to the plasmoid instability
e New plasmoids are generated when local current sheets exceed a
critical length.
Le ~ Sen/Va ~ LS./S, 6 ~ Le/St? ~ LSY?/8
c cn/va c/ s Yc c )
J ~ B/8, ~ BS/LSY?
Number of plasmoids n, ~ L/L. ~ S/S,
Inflow speed ~ V4/1/S., area transfer rate into each plasmoid
~ LCVA/\/‘STc

o Total area transfer rate

~nyLcVa/\/Se ~ LVa/\/Se ~ \/S/SexS-P rate



Statistical Distribution of Plasmoids

e Fermo et al. (2010): f(1)) decays exponentially at large 1.
o Uzdensky et al. (2010): f() ~ 92

o Huang and Bhattacharjee (2012): f(¢)) ~ ¢! followed by an
exponential falloff at large 1

Loureiro et al. PoP (2012) Huang & Bhattacharjee PRL (2012)
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Kinetic Model of Plasmoid Distribution

where H (1), v) /dzp/ d"”*” F(' ).

@ h(v) is the distribution in relative g0
velocity when new plasmoids are 18;
generated. 107
106 L
e Plasmoid loss term due to merging is = 1w}
. . / = 10'F
proportional to relative speed |v — v| 0k \
C . . . . 102F — 106 \
e Distribution in 1 is recovered via ol =10 ‘
_ o0 of| — (Ta= 107
- ffoo F(%Z%U)dv 1 n n n n . . ]

107! e ]
107% 1077 107 107> 107* 1073 1072 107!
¥

o If [v —v'| — Va, then f ~ 32
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Where is Power Law Es

e Transition from power law to
exponential occurs when the
dominant loss mechanism switches
from coalescence to advection —
approximately when N ~ 1.

o Plasmoids in the power-law regime
have to be deep in the hierarchy,
while plasmoids in the exponential
tail are the very largest plasmoids in
each snapshot.
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Plasmoids in Post-CME Current Sheet

o Left: Moving bright blobs in LASCO white light coronagraphy
may be identified as plasmoids.

e Right: Plasmoids in the post-CME current sheet from a S = 10°
simulation of the loss of equilibrium CME model

Guo et al. ApJ Lett. 2012
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Moving blobs in post-CME current sheet

(Guo et al. 2013)
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Including Hall Effect — Phase Diagram

JxB - Vp,

E=—-uxB+d; +nJ

e Another dimensionless parameter L/d; in addition to S.

A: S =5x10° L/d; = 2500
B: S =5x10°, L/d; = 5000
C: S =5x10°, L/d; = 10000

magnetotail

14 /37



Single X-Point Hall Reconnection

t=0.10
re2el

2282

S =5x10% L/d; = 2500



Intermediate Regime, Both S-P and Single X-Point Hall

Solutions are Unstable

t=010

r22et

2282

S =5 x10°, L/d; = 5000
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er to Realize Intermediate Regime in Large S

e For the same Sy, = Vad;/n, we realize the intermediate regime at
L/d; = 5000 but for L/d; < 2500 a single X-point forms

o However, fully kinetic particle-in-cell simulations show continuous
plasmoid formation over a much broader range in the phase
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Oblique Tearing Modes in 3
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Baalrud et al. PoP (2012)

Interaction of oblique tearing modes when islands overlap =
self-generated turbulence and stochastic field lines?
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3D Simulation Setup
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Viscous/Resistive MHD equations.

Initial current sheet width ~ 0.003, reconnecting B, ~ 1, guide
field B, ~ 1.

p=1,p=2 B8=2p/B>~2, 8=2x10° Pm=1.

Simulation box L, = L, = L, = 1; conducting walls in  — y plane,
periodic in z.



Sweet-Parker & 2D Pl oid Reconnection

o Sweet-Parker reconnection: 2D, no initial noise

J.at z =0, t =4.00

-8.48¢2

0.0
x

e 2D Plasmoid-Dominated reconnection: seeded with initial
random noise ~ 1073 on velocity

J,at z =0, t =2.60

0.05
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Reconnection Rate Comparison

@ 2D and 3D plasmoid-dominated reconnection achieve comparable,
faster than Sweet-Parker, reconnection rate

@ 3D reconnection is measured with the mean field B = - f Bdz.
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Spectrum of Energy Fluctuation
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Spectrum of En

gy Fluctuation, Averaged o
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Probing Anisotropy with Structure Functions

°ew=,/pu
e Local in plane field B; = (X% + 22) - (B(r1) + B(r2))/2

o = ‘(rl —12) - by

ST = ’(1‘1 —ra) X Bl‘
o Fy(ro,my) = (|w(ry) - wir2)f*),

FP(rr) = (IB(r1) = Bro)*)

5 W structure function at y = 0.000, t =3.5 0 0.05 B structure function at y = 0.000, t =3.5
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Plasmoid Instability, Summary

e Plasmoid Instability in 2D can facilitate fast, nearly S-independent
reconnection even in resistive MHD, and can trigger even faster
Hall reconnection if current sheet fragment becomes thinner than d;

e However, plasmoid-instability mediated reconnection in 3D is
qualitatively very different from that in 2D. Interestingly, in fully
developed state, reconnection rate in 2D and 3D are comparable.

o Interaction between oblique tearing modes can lead to
self-generated turbulent reconnection

o Energy fluctuations preferentially align with the local magnetic
field, which is one of the characteristics of MHD turbulence

o The spectra of magnetic energy and kinetic energy fluctuations both
satisfy power laws.

e The turbulence is highly inhomogeneous, due to the presence of
magnetic shear and outflow jets, therefore traditional turbulence
theory may not be applicable.



Observation of Supra-Arcade Downflows (SADs)

e First reported in McKenzie & Hudson APJ 1999

o Low emission, low density (< 10%cm~2), high temperature (~ 107),
wavy structures surrounded by bright fan above flare arcade
o Average lifetime 10-20 min

30 /37



ations of SADs

e Old interpretation — SADs are cross sections of reconnected flux
tubes from “patchy” reconnection

o New interpretation — SADs are wakes behind cross sections of
reconnected flux tubes

e Difficulty — Why wakes are not filled in by surrounding high
density plasmas?

(a) Re-interpretation of SADs

i Large, evacuated Wakes
flux tube cross-sections

Thin flux tubes

Savage et al. APJ 2012
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Some Existing simulations of SADs
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Linton et al. 2009

Cassak et al. 2013

e Linton et al. employed anomalous resistivity localized in both
space & time

o Cassak et al. argued density gradient is important. Reconnection
is continuous in time so SADs are not filled in, but must be patchy
along the out-of-plane direction.



Can Rayleigh-Taylor Type Instabilities be the Cause of

SADs?

@ SADs occurs predominantly with k- B ~ 0 —
interchange/ballooning modes

o High pressure below the arcades — bad curvature

e Low density outflow jet pushes against high density arcade region

.. Shock
b
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3D Simulation with Harris Sheet

(b) Density

w0 Lo To 1
x

(d) Emission count rates of Fe XXI
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(&) Emission count rates of Fe XXIV

Guo et al. APJL 2014
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R-T “Mushrooms” at the Tips of Spikes
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« Innes et al. APJ 2014

Conclusion — SAD-like structures can arise in the exhaust region of
reconnection as a consequence of R-T type instabilities, without
reconnection itself being localized in either space or time.



What’s Next

e Turbulent Reconnection in 3D

e Highly inhomogeneous, due to the presence of magnetic shear and
outflow jets — Need new theory or phenomenology

o Self-generated vs. externally driven turbulent reconnection

o Current sheet broadening due to self-generated turbulence —
Sufficient to explain solar observation?

e Include Hall effect

e Supra-Arcade Downflows

o Include anisotropic thermal conductivity so that we can “see”
arcades in synthetic emission

o Line-tied boundary condition

e High S simulations — current sheet spontaneous becomes patchy

e CME, plasmoids, and SADs in a single model

e Improve fluid models through closure schemes (e.g. recent work by
Liang Wang & Ammar Hakim with higher moments)
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Possible Connection with Lab. Plasma Physics

e Plasmoid instability in sawtooth crash — with Sybille Giinter &
coworkers in cylindrical geometry; maybe possible in 3D toroidal
geometry?

e Explore new regimes in the phase diagram with FLARE or high
energy density laser plasmas experiment (Hanto Ji, Will Fox, et al.)

e Plasmoids in NSTX experiment? (Nimrod simulation by Fatima
Ebrahimi)

e Open to suggestions!
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